(S-19
Lab Reagents
(S-19 Laboratories manufactures the (s-19 reagents distributed by Genprice. The (S-19 reagent is RUO (Research Use Only) to test human serum or cell culture lab samples. To purchase these products, for the MSDS, Data Sheet, protocol, storage conditions/temperature or for the concentration, please contact (S-19. Other (S-19 products are available in stock. Specificity: (S-19 Category:
Rabbit Anti-Sm28/Smp28/GST28/GST-mu protein (S. Japonicum, 1-211aa) antiserum |
|||
SM282-S | Alpha Diagnostics | 100 ul | EUR 548.4 |
SARS-CoV-2 (COVID-19) Trimeric Spike (S) Recombinant Protein |
|||
10-075 | ProSci | 0.1 mg | EUR 991.5 |
Description: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is an enveloped, single-stranded, positive-sense RNA virus that belongs to the Coronaviridae family 1. The SARS-CoV-2 genome, which shares 79.6% identity with SARS-CoV, encodes four essential structural proteins: the spike (S), envelope (E), membrane (M), and nucleocapsid protein (N) 2. The S protein is a transmembrane, homotrimeric, class I fusion glycoprotein that mediates viral attachment, fusion, and entry into host cells 3. Each ~180 kDa monomer contains two functional subunits, S1 (~700 a.a) and S2 (~600 a.a), that mediate viral attachment and membrane fusion, respectively. S1 contains two major domains, the N-terminal (NTD) and C-terminal domains (CTD). The CTD contains the receptor-binding domain (RBD), which binds to the angiotensin-converting enzyme 2 (ACE2) receptor on host cells 3-5. Although both SARS-CoV and SARS-CoV-2 bind the ACE2 receptor, the RBDs only share ~73% amino acid identity, and the SARS-CoV-2 RBD binds with a higher affinity compared to SARS-CoV 3, 6. The RBD is dynamic and undergoes hinge-like conformational changes, referred to as the “down” or “up” conformations, which hide or expose the receptor-binding motifs, respectively 7. Following receptor binding, S1 destabilizes, and TMPRSS2 cleaves S2, which undergoes a pre- to post-fusion conformation transition, allowing for membrane fusion 8, 9. The S protein has been the main focus of therapeutic and vaccine design as it is highly immunogenic. Both neutralizing antibodies 10,11 and memory T cells 12,13 targeting the S protein are present in the sera of convalescent COVID-19 patients. |
SARS-CoV-2 (COVID-19) S Protein RBD Recombinant Protein |
|||
10-433 | ProSci | 0.1 mg | EUR 714.3 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) Spike S Trimer Recombinant Protein |
|||
20-182 | ProSci | 0.1 mg | EUR 651.3 |
Description: The spike protein (S) of coronavirus (CoV) attaches the virus to its cellular receptor, angiotensin-converting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction. The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) S-trimer 6P Recombinant Protein |
|||
11-068 | ProSci | 0.1 mg | EUR 714.3 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) S + M + E Recombinant Protein |
|||
11-071 | ProSci | 0.1 mg | EUR 695.4 |
Description: Coronavirus envelope (E) proteins are short (100 residues) polypeptides that contain at least one transmembrane (TM) domain and a cluster of 2-3 juxtamembrane cysteines. These proteins are involved in viral morphogenesis and tropism, and their absence leads in some cases to aberrant virions, or to viral attenuation. In common to other viroporins, coronavirus envelope proteins increase membrane permeability to ions, plays a central role in virus morphogenesis and assembly. Acts as a viroporin and self-assembles in host membranes forming pentameric protein-lipid pores that allow ion transport. Also plays a role in the induction of apoptosis. Activates the host NLRP3 inflammasome, leading to IL-1beta overproduction. |
SARS-CoV-2 (COVID-19) S Protein NTD Recombinant Protein |
|||
92-738 | ProSci | 0.05 mg | EUR 468.6 |
Description: Protein S (PROS1) is glycoprotein and expressed in many cell types supporting its reported involvement in multiple biological processes that include coagulation, apoptosis, cancer development and progression, and the innate immune response. Known receptors bind S1 are ACE2, angiotensin-converting enzyme 2, DPP4, CEACAM etc.. The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) S-trimer (D614G) Recombinant Protein |
|||
92-748 | ProSci | 0.05 mg | EUR 619.8 |
Description: The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell atthe advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acuterespiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusionrequired for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's beenreported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the humanACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor.S2 contains basic elements needed for the membrane fusion.The S protein plays key parts in the induction ofneutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) S Protein HR1 Recombinant Protein |
|||
92-760 | ProSci | 0.05 mg | EUR 468.6 |
Description: The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion. After binding of RBD in S1 subunit of S protein on the virion to the ACE2 receptor on the target cell, the heptad repeat 1 (HR1) and 2 (HR2) domains in its S2 subunit of S protein interact with each other to form a six-helix bundle (6-HB) fusion core, bringing viral and cellular membranes into close proximity for fusion and infection. The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
SARS-CoV-2 (COVID-19) S Protein HR1 Recombinant Protein |
|||
92-761 | ProSci | 0.05 mg | EUR 468.6 |
Description: The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. Most notable is severe acute respiratory syndrome (SARS). The severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) glycoprotein alone can mediate the membrane fusion required for virus entry and cell fusion. It is also a major immunogen and a target for entry inhibitors. It's been reported that 2019-nCoV can infect the human respiratory epithelial cells through interaction with the human ACE2 receptor. The spike protein is a large type I transmembrane protein containing two subunits, S1 and S2. S1 mainly contains a receptor binding domain (RBD), which is responsible for recognizing the cell surface receptor. S2 contains basic elements needed for the membrane fusion. After binding of RBD in S1 subunit of S protein on the virion to the ACE2 receptor on the target cell, the heptad repeat 1 (HR1) and 2 (HR2) domains in its S2 subunit of S protein interact with each other to form a six-helix bundle (6-HB) fusion core, bringing viral and cellular membranes into close proximity for fusion and infection. The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity. |
Recombinant COVID-19 (isolate Wuhan-Hu-1) S(ΔTM) protein |
|||
nCoVS-125V | Creative BioMart | 100ug | EUR 950.4 |
Description: Purified recombinant COVID-19(isolate Wuhan-Hu-1) S(ΔTM) protein was expressed in HEK293 cells. |
Rabbit Anti-Sm-p80/Calpain/CANP (S. mansoni, 1-758aa, His-tag >95%) antiserum |
|||
SMP801-S | Alpha Diagnostics | 100 ul | EUR 548.4 |
4-(46-Bis(octylthio)-s-triazin-2-yl)-26-di-tert-butylphenol [Irganox 565] |
|||
S-3901 | Scientific Laboratory Supplies | 1ML | EUR 69.54 |
Colon Tissue Lysate (Normal) |
|||
1715-19 | ProSci | 0.1 mg | EUR 260.7 |
Description: Colon tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 5% β-mercaptoethanol. |
Cellufine Phosphate |
|||
19-524 | JNC America | 10 ml | EUR 516 |
Cellufine Phosphate |
|||
19-545 | JNC America | 50 ml | EUR 542.4 |
Cellufine Phosphate |
|||
19-546 | JNC America | 500 ml | EUR 4046.4 |